Calculate mean average cross power over splices using a splicing table
ave_cross_power_over_splices.Rd
Randomly generates splices from a splicing table and calculates average cross power for each segment and splice. Calculates the mean average cross power over the random splices for each segment and period. Compares with the average cross power for the original splice.
Usage
ave_cross_power_over_splices(
jv,
splicing_df,
num_splices,
columns,
sampling_type = "offset",
rejection_list = list(),
include_original = TRUE,
show_plot = TRUE
)
Arguments
- jv
JoinedView
object.- splicing_df
Splice
object.- num_splices
number of randomly chosen splices.
- columns
name of data columns on which to calculate average cross power.
- sampling_type
either 'offset' or 'gap'.
- rejection_list
list of splice objects that random splices must not overlap.
- include_original
include the original splice in output? (Default is TRUE).
- show_plot
show a plot? (Default is TRUE).
See also
Other statistical and analysis functions:
apply_column_spliceview()
,
apply_segment_spliceview()
,
ave_cross_power_spliceview()
,
ave_power_over_splices()
,
ave_power_spliceview()
,
calculate_ave_cross_power1()
,
calculate_ave_power1()
,
compare_ave_cross_power1()
,
compare_ave_power1()
,
compare_avg_cross_power2()
,
compare_avg_power2()
,
difference_onsets()
,
pull_segment_spliceview()
,
sample_gap_splice()
,
sample_offset_splice()
,
summary_onsets()
,
visualise_sample_splices()
Examples
r <- get_sample_recording()
fv_list <- get_filtered_views(r, data_points = "Nose", n = 41, p = 3)
jv <- get_joined_view(fv_list)
d <- get_duration_annotation_data(r)
splicing_tabla_solo_df <- splice_time(d,
expr = "Tier == 'INTERACTION' & Comments == 'Mutual look and smile'")
# Only do the first splice for sample data
mean_ave_cross_power_df <- ave_cross_power_over_splices(jv,
splicing_tabla_solo_df[1,], num_splices = 10,
columns = c('Nose_x_Central_Sitar', 'Nose_y_Central_Sitar'), show_plot = TRUE)
#> Accepted splices: 9
#> Accepted splices: 18
#> Warning: NaNs produced
#>
|
| | 0%
#> Warning: NaNs produced
#>
|
|======================================================================| 100%
#> Warning: NaNs produced
#>
|
| | 0%
#> Warning: NaNs produced
#>
|
|======================================================================| 100%
#> Warning: NaNs produced
#>
|
| | 0%
#> Warning: NaNs produced
#>
|
|======================================================================| 100%
#> Warning: NaNs produced
#>
|
| | 0%
#> Warning: NaNs produced
#>
|
|======================================================================| 100%
#> Warning: NaNs produced
#>
|
| | 0%
#> Warning: NaNs produced
#>
|
|======================================================================| 100%
#> Warning: NaNs produced
#>
|
| | 0%
#> Warning: NaNs produced
#>
|
|======================================================================| 100%
#> Warning: NaNs produced
#>
|
| | 0%
#> Warning: NaNs produced
#>
|
|======================================================================| 100%
#> Warning: NaNs produced
#>
|
| | 0%
#> Warning: NaNs produced
#>
|
|======================================================================| 100%
#> Warning: NaNs produced
#>
|
| | 0%
#> Warning: NaNs produced
#>
|
|======================================================================| 100%
#> Warning: NaNs produced
#>
|
| | 0%
#> Warning: NaNs produced
#>
|
|======================================================================| 100%
#> Warning: NaNs produced
#>
|
| | 0%
#> Warning: NaNs produced
#>
|
|======================================================================| 100%