Alternative analyses
In the paper we utilise the division of WEIRD/Non-WEIRD countries suggested by Krys et al. 2024.
::kable(table(d$CountryDataCollected_WEOG)/sum(table(d$CountryDataCollected_WEOG)),digits = 2) knitr
Var1 | Freq |
---|---|
Non-WEOG | 0.23 |
WEOG | 0.77 |
We considered two possible alternatives earlier, one based on the UN definition of the Western European and Others Group (WEOG) and one based on cultural distances (Mutkukhrisna et al., 2020). In short, using these divisions to allocate WEIRD and non-WEIRD does not materially change our analyses or results. Here are the main summaries conducted with these two alternative country divisions.
Descriptives for alternative WEIRD formulations: WEOG countries
Western European and Others Group (WEOG) defined by UN, https://en.wikipedia.org/wiki/Western_European_and_Others_Group.
source('scripts/alternative_WEIRD_indices.R')
<- alternative_WEIRD_indices(d,'WEOG'); d<-d1$d; DF<-d1$DF d1
Using WEIRD country index: WEOG
::kable(table(d$CountryDataCollected_WEOG)/sum(table(d$CountryDataCollected_WEOG)),digits = 2) knitr
Var1 | Freq |
---|---|
Non-WEOG | 0.16 |
WEOG | 0.84 |
source('scripts/table1.R')
sample_country_data_collected_WEOG | median | lwr.ci | upr.ci |
---|---|---|---|
WEOG | 48 | 44 | 52 |
Non-WEOG | 60 | 49 | 76 |
[1] “\(W = 120,207.00\), \(p = .030\)”
wtd.avg | CI.LL | CI.UL | |
---|---|---|---|
Non-WEIRD | 20.32 | 17.25 | 22.71 |
WEIRD | 27.97 | 25.67 | 30.32 |
[1] “t value = 9.5, df = 242.07, p-value = 0”
Age SD:
wtd.avg | CI.LL | CI.UL | |
---|---|---|---|
Non-WEIRD | 4.38 | 3.25 | 5.28 |
WEIRD | 7.21 | 6.23 | 8.30 |
[1] “t value = 7.21, df = 189.32, p-value = 0”
Gender balance (country data collected):
wtd.avg | CI.LL | CI.UL | |
---|---|---|---|
Non-WEIRD | 0.55 | 0.50 | 0.58 |
WEIRD | 0.59 | 0.57 | 0.61 |
[1] “t value = 2.6, df = 150.57, p-value = 0.006”
Gender balance (based on first author country):
wtd.avg | CI.LL | CI.UL | |
---|---|---|---|
Non-WEIRD | 0.56 | 0.50 | 0.59 |
WEIRD | 0.58 | 0.57 | 0.60 |
[1] “t value = 2, df = 121.93, p-value = 0.034”
Solely musicians:
Expertise | % |
---|---|
musicians | 30.5 |
musicians; non-musicians | 22.0 |
non-musicians | 10.1 |
Not specified | 37.4 |
[1] “musicians n=371: 30% [27% to 33%]” [1] “musicians n=58: 33% [26% to 40%]”
var | n | label | prop | lwr.ci | upr.ci |
---|---|---|---|---|---|
musicians | 371 | WEIRD | 0.30 | 0.27 | 0.33 |
others | 863 | WEIRD | 0.70 | 0.67 | 0.73 |
musicians | 58 | Non-WEIRD | 0.33 | 0.26 | 0.40 |
others | 119 | Non-WEIRD | 0.67 | 0.60 | 0.74 |
[1] “Chi = 0.53 , p-value = 0.470764617691154”
musicians and non-musicians: [1] “musicians n=654: 53% [50% to 56%]” [1] “musicians n=88: 50% [42% to 57%]”
var | n | label | prop | lwr.ci | upr.ci |
---|---|---|---|---|---|
musicians | 654 | WEIRD | 0.53 | 0.50 | 0.56 |
non-musicians | 580 | WEIRD | 0.47 | 0.44 | 0.50 |
musicians | 88 | Non-WEIRD | 0.50 | 0.42 | 0.57 |
non-musicians | 89 | Non-WEIRD | 0.50 | 0.43 | 0.58 |
[1] “Chi = 0.67 , p-value = 0.407796101949025”
Solely Non-musicians: [1] “non-musicians n=127: 10% [9% to 12%]” [1] “non-musicians n=26: 15% [10% to 20%]”
var | n | label | prop | lwr.ci | upr.ci |
---|---|---|---|---|---|
others | 1107 | WEIRD | 0.90 | 0.88 | 0.91 |
non-musicians | 127 | WEIRD | 0.10 | 0.09 | 0.12 |
others | 151 | Non-WEIRD | 0.85 | 0.81 | 0.91 |
non-musicians | 26 | Non-WEIRD | 0.15 | 0.10 | 0.20 |
[1] “Chi = 3.1 , p-value = 0.0954522738630685”
University sample: [1] “university n=506: 41% [38% to 44%]” [1] “university n=73: 41% [34% to 49%]”
var | n | label | prop | lwr.ci | upr.ci |
---|---|---|---|---|---|
others | 728 | WEIRD | 0.59 | 0.56 | 0.62 |
university | 506 | WEIRD | 0.41 | 0.38 | 0.44 |
others | 104 | Non-WEIRD | 0.59 | 0.51 | 0.66 |
university | 73 | Non-WEIRD | 0.41 | 0.34 | 0.49 |
[1] “Chi = 0 , p-value = 1”
Sample unspecified: [1] “unsp n=552: 45% [42% to 48%]” [1] “unsp n=69: 39% [32% to 47%]”
var | n | label | prop | lwr.ci | upr.ci |
---|---|---|---|---|---|
others | 682 | WEIRD | 0.55 | 0.52 | 0.58 |
unsp | 552 | WEIRD | 0.45 | 0.42 | 0.48 |
others | 108 | Non-WEIRD | 0.61 | 0.54 | 0.69 |
unsp | 69 | Non-WEIRD | 0.39 | 0.32 | 0.47 |
[1] “Chi = 2.08 , p-value = 0.16791604197901”
Recruitment volunteers: [1] “volunteer n=368: 30% [27% to 32%]” [1] “volunteer n=56: 32% [25% to 39%]”
var | n | label | prop | lwr.ci | upr.ci |
---|---|---|---|---|---|
others | 866 | WEIRD | 0.70 | 0.68 | 0.73 |
volunteer | 368 | WEIRD | 0.30 | 0.27 | 0.32 |
others | 121 | Non-WEIRD | 0.68 | 0.62 | 0.75 |
volunteer | 56 | Non-WEIRD | 0.32 | 0.25 | 0.39 |
[1] “Chi = 0.16 , p-value = 0.685221539615238”
Recruitment unspecified: [1] “Not specified n=483: 39% [36% to 42%]” [1] “Not specified n=90: 51% [44% to 59%]”
var | n | label | prop | lwr.ci | upr.ci |
---|---|---|---|---|---|
Not specified | 483 | WEIRD | 0.39 | 0.36 | 0.42 |
others | 751 | WEIRD | 0.61 | 0.58 | 0.64 |
Not specified | 90 | Non-WEIRD | 0.51 | 0.44 | 0.59 |
others | 87 | Non-WEIRD | 0.49 | 0.42 | 0.57 |
[1] “Chi = 8.32 , p-value = 0.00392766563342981”
Experimenter Created Music: [1] “experimenter n=278: 34% [31% to 38%]” [1] “experimenter n=45: 34% [27% to 43%]”
var | n | label | prop | lwr.ci | upr.ci |
---|---|---|---|---|---|
other | 532 | WEIRD | 0.66 | 0.62 | 0.69 |
experimenter | 278 | WEIRD | 0.34 | 0.31 | 0.38 |
other | 86 | Non-WEIRD | 0.66 | 0.58 | 0.74 |
experimenter | 45 | Non-WEIRD | 0.34 | 0.27 | 0.43 |
[1] “Chi = 0 , p-value = 0.999999999999998”
Western music: [1] “western n=589: 73% [70% to 76%]” [1] “western n=74: 56% [48% to 65%]”
var | n | label | prop | lwr.ci | upr.ci |
---|---|---|---|---|---|
other | 221 | WEIRD | 0.27 | 0.24 | 0.30 |
western | 589 | WEIRD | 0.73 | 0.70 | 0.76 |
other | 57 | Non-WEIRD | 0.44 | 0.35 | 0.52 |
western | 74 | Non-WEIRD | 0.56 | 0.48 | 0.65 |
[1] “Chi = 13.5 , p-value = 0.000238986429147995”
Music origin unspecified: [1] “Not specified n=189: 23% [20% to 26%]” [1] “Not specified n=28: 21% [15% to 29%]”
var | n | label | prop | lwr.ci | upr.ci |
---|---|---|---|---|---|
other | 621 | WEIRD | 0.77 | 0.74 | 0.80 |
Not specified | 189 | WEIRD | 0.23 | 0.20 | 0.26 |
other | 103 | Non-WEIRD | 0.79 | 0.73 | 0.86 |
Not specified | 28 | Non-WEIRD | 0.21 | 0.15 | 0.29 |
[1] “Chi = 0.15 , p-value = 0.70234703527474”
Descriptives for alternative WEIRD formulations: Cultural distance (from the US)
Muthukrishna et al., 2020, https://journals.sagepub.com/doi/full/10.1177/0956797620916782#supplementary-materials defines cultural distances between countries based on numerous indices (religion, political orientation, social, financial, sexual, law, media, etc.). Since this metric has been established for 80 countries, we inferred that some countries in our dataset are culturally or geographically proximate countries, listed below. See also http://www.culturaldistance.com
Austria from Germany
Beligum from France
Croatia from Slovenia
Czech Republic from Poland
Denmark from Sweden
Ireland from Great Britain
Portugal from Spain
Slovakia from Slovenia
Belgium from France
Central African Republic from Mali
Greece from Armenia
Iceland from Norway
Israel from Japan
Kenya from Ethiopia
Latvia from Estonia
Serbia from Slovenia
UAE from Malaysia
We split the countries into WEIRD or non-WEIRD based on mean distance from the US + 0.02.
source('scripts/alternative_WEIRD_indices.R')
<- alternative_WEIRD_indices(d,'Muthukhrisna'); d <- d2$d; DF <- d2$DF d2
Using WEIRD country index: Muthukhrisna
::kable(table(d$CountryDataCollected_WEOG)/sum(table(d$CountryDataCollected_WEOG)),digits = 2) knitr
Var1 | Freq |
---|---|
Non-WEOG | 0.12 |
WEOG | 0.88 |
source('scripts/table1.R')
sample_country_data_collected_WEOG | median | lwr.ci | upr.ci |
---|---|---|---|
WEOG | 48.0 | 44.00 | 53.0 |
Non-WEOG | 54.5 | 42.01 | 71.5 |
[1] “\(W = 103,461.00\), \(p = .486\)”
wtd.avg | CI.LL | CI.UL | |
---|---|---|---|
Non-WEIRD | 19.93 | 17.06 | 22.04 |
WEIRD | 27.63 | 25.38 | 29.94 |
[1] “t value = 9.37, df = 203.71, p-value = 0”
Age SD:
wtd.avg | CI.LL | CI.UL | |
---|---|---|---|
Non-WEIRD | 3.72 | 2.54 | 4.58 |
WEIRD | 7.12 | 6.27 | 8.08 |
[1] “t value = 8.04, df = 151.22, p-value = 0”
Gender balance (country data collected):
wtd.avg | CI.LL | CI.UL | |
---|---|---|---|
Non-WEIRD | 0.54 | 0.49 | 0.56 |
WEIRD | 0.59 | 0.57 | 0.61 |
[1] “t value = 4.17, df = 139.18, p-value = 0”
Gender balance (based on first author country):
wtd.avg | CI.LL | CI.UL | |
---|---|---|---|
Non-WEIRD | 0.54 | 0.49 | 0.56 |
WEIRD | 0.59 | 0.57 | 0.61 |
[1] “t value = 3.68, df = 109, p-value = 0”
Solely musicians:
Expertise | % |
---|---|
musicians | 30.5 |
musicians; non-musicians | 22.0 |
non-musicians | 10.1 |
Not specified | 37.4 |
[1] “musicians n=381: 30% [28% to 33%]” [1] “musicians n=48: 30% [23% to 37%]”
var | n | label | prop | lwr.ci | upr.ci |
---|---|---|---|---|---|
musicians | 381 | WEIRD | 0.3 | 0.28 | 0.33 |
others | 870 | WEIRD | 0.7 | 0.67 | 0.72 |
musicians | 48 | Non-WEIRD | 0.3 | 0.23 | 0.37 |
others | 112 | Non-WEIRD | 0.7 | 0.63 | 0.77 |
[1] “Chi = 0.01 , p-value = 0.919540229885057”
musicians and non-musicians: [1] “musicians n=662: 53% [50% to 56%]” [1] “musicians n=80: 50% [42% to 58%]”
var | n | label | prop | lwr.ci | upr.ci |
---|---|---|---|---|---|
musicians | 662 | WEIRD | 0.53 | 0.50 | 0.56 |
non-musicians | 589 | WEIRD | 0.47 | 0.44 | 0.50 |
musicians | 80 | Non-WEIRD | 0.50 | 0.42 | 0.58 |
non-musicians | 80 | Non-WEIRD | 0.50 | 0.42 | 0.58 |
[1] “Chi = 0.48 , p-value = 0.493753123438281”
Solely Non-musicians: [1] “non-musicians n=131: 10% [9% to 12%]” [1] “non-musicians n=22: 14% [9% to 19%]”
var | n | label | prop | lwr.ci | upr.ci |
---|---|---|---|---|---|
others | 1120 | WEIRD | 0.90 | 0.88 | 0.91 |
non-musicians | 131 | WEIRD | 0.10 | 0.09 | 0.12 |
others | 138 | Non-WEIRD | 0.86 | 0.82 | 0.92 |
non-musicians | 22 | Non-WEIRD | 0.14 | 0.09 | 0.19 |
[1] “Chi = 1.58 , p-value = 0.222888555722139”
University sample: [1] “university n=510: 41% [38% to 44%]” [1] “university n=69: 43% [36% to 51%]”
var | n | label | prop | lwr.ci | upr.ci |
---|---|---|---|---|---|
others | 741 | WEIRD | 0.59 | 0.56 | 0.62 |
university | 510 | WEIRD | 0.41 | 0.38 | 0.44 |
others | 91 | Non-WEIRD | 0.57 | 0.49 | 0.65 |
university | 69 | Non-WEIRD | 0.43 | 0.36 | 0.51 |
[1] “Chi = 0.33 , p-value = 0.59720139930035”
Sample unspecified: [1] “unsp n=563: 45% [42% to 48%]” [1] “unsp n=58: 36% [29% to 44%]”
var | n | label | prop | lwr.ci | upr.ci |
---|---|---|---|---|---|
others | 688 | WEIRD | 0.55 | 0.52 | 0.58 |
unsp | 563 | WEIRD | 0.45 | 0.42 | 0.48 |
others | 102 | Non-WEIRD | 0.64 | 0.57 | 0.72 |
unsp | 58 | Non-WEIRD | 0.36 | 0.29 | 0.44 |
[1] “Chi = 4.41 , p-value = 0.039480259870065”
Recruitment volunteers: [1] “volunteer n=370: 30% [27% to 32%]” [1] “volunteer n=54: 34% [27% to 42%]”
var | n | label | prop | lwr.ci | upr.ci |
---|---|---|---|---|---|
others | 881 | WEIRD | 0.70 | 0.68 | 0.73 |
volunteer | 370 | WEIRD | 0.30 | 0.27 | 0.32 |
others | 106 | Non-WEIRD | 0.66 | 0.59 | 0.74 |
volunteer | 54 | Non-WEIRD | 0.34 | 0.27 | 0.42 |
[1] “Chi = 0.99 , p-value = 0.320865528891456”
Recruitment unspecified: [1] “Not specified n=496: 40% [37% to 42%]” [1] “Not specified n=77: 48% [41% to 56%]”
var | n | label | prop | lwr.ci | upr.ci |
---|---|---|---|---|---|
Not specified | 496 | WEIRD | 0.40 | 0.37 | 0.42 |
others | 755 | WEIRD | 0.60 | 0.58 | 0.63 |
Not specified | 77 | Non-WEIRD | 0.48 | 0.41 | 0.56 |
others | 83 | Non-WEIRD | 0.52 | 0.44 | 0.60 |
[1] “Chi = 3.88 , p-value = 0.0488020308237839”
Experimenter Created Music: [1] “experimenter n=266: 34% [30% to 37%]” [1] “experimenter n=40: 38% [30% to 48%]”
var | n | label | prop | lwr.ci | upr.ci |
---|---|---|---|---|---|
other | 528 | WEIRD | 0.66 | 0.63 | 0.70 |
experimenter | 266 | WEIRD | 0.34 | 0.30 | 0.37 |
other | 65 | Non-WEIRD | 0.62 | 0.53 | 0.72 |
experimenter | 40 | Non-WEIRD | 0.38 | 0.30 | 0.48 |
[1] “Chi = 0.68 , p-value = 0.409895772994663”
Western music: [1] “western n=585: 74% [71% to 77%]” [1] “western n=54: 51% [42% to 61%]”
var | n | label | prop | lwr.ci | upr.ci |
---|---|---|---|---|---|
other | 209 | WEIRD | 0.26 | 0.23 | 0.29 |
western | 585 | WEIRD | 0.74 | 0.71 | 0.77 |
other | 51 | Non-WEIRD | 0.49 | 0.39 | 0.58 |
western | 54 | Non-WEIRD | 0.51 | 0.42 | 0.61 |
[1] “Chi = 21.26 , p-value = 4.00546262205008e-06”
Music origin unspecified: [1] “Not specified n=180: 23% [20% to 26%]” [1] “Not specified n=28: 27% [19% to 36%]”
var | n | label | prop | lwr.ci | upr.ci |
---|---|---|---|---|---|
other | 614 | WEIRD | 0.77 | 0.74 | 0.80 |
Not specified | 180 | WEIRD | 0.23 | 0.20 | 0.26 |
other | 77 | Non-WEIRD | 0.73 | 0.66 | 0.82 |
Not specified | 28 | Non-WEIRD | 0.27 | 0.19 | 0.36 |
[1] “Chi = 0.62 , p-value = 0.429797063240015”
Summary of differences
When these two alternative attributions (WEOG and Mutkukhrisna et al., 2020) of countries across WEIRD/non-WEIRD divide are incorporated into the analysis of the main trends in the sample of music psychology studies, the outcome reported in Table 1 with the country division provided by Krys et al. provides largely identical patterns despite small fluctuations in the WEIRD/non-WEIRD division (non-WEIRD in Krys et al. is 23%, in WEOG 16%, and in Mutkukhrisna 12% in this data).
To put the differences in the actual variables of interest more precisely, there are 11 statistical comparisons (of counts or means) in Table 1. For the division based on WEOG countries, one of the rows in Table 1 results in a difference (the sample size is significant at p<.05 level). For the second variant country division by Mutkukhrisna et al., there are no differences to the reported division of countries.
References
Krys, K., de Almeida, I., Wasiel, A., & Vignoles, V. L. (2024). WEIRD–Confucian comparisons: Ongoing cultural biases in psychology’s evidence base and some recommendations for improving global representation. American Psychologist. https://doi.org/10.1037/amp0001298
Muthukrishna, M., Bell, A. V., Henrich, J., Curtin, C. M., Gedranovich, A., McInerney, J., & Thue, B. (2020). Beyond Western, Educated, Industrial, Rich, and Democratic (WEIRD) Psychology: Measuring and Mapping Scales of Cultural and Psychological Distance. Psychological Science, 31(6), 678-701. https://doi.org/10.1177/0956797620916782