Gender in Music Psychology
  • Gender in music psychology

Analyse gender in music psychology

T. Eerola, 1/8/2025

Gender analysis of the music psychology journals since 2000 (Musicae Scientiae, Psychology of Music, Music Perception, Journal of New Music Research, and Music & Science).

Required libraries

Load and preprocess data

source('scripts/load_scopus_datasets.R') # Creates full_names dataset

Entries in the merged database: 3926 Entries in the author-expanded database: 9922 Entries in the author-expanded database after filtering editorials etc: 9662 Entries in the author-expanded database after filtering empty: 9651

source('scripts/attribute_country.R') # Add country affiliations

Entries in the author-expanded database after author affiliations: 9630

source('scripts/attribute_gender.R') # Adds gender attributions (precalculated with API)
Gender n percentage
ambiguous 32 0.4
female 3701 40.6
male 5365 58.8
unknown 27 0.3
Total 9125 100.1

Entries in the author-expanded database after filtering books/unattributed: 9066

source('scripts/name_gender_fixes.R') # Fixes the gender attribution of some names manually 

Manual fixes

source('scripts/create_keys.R') # Add keys for authors and study+author

Single authors count: 778 Single + last authors count: 3373 Unique authors count: 5312 Unique countries count: 63

source('scripts/clean_citations_and_OA.R') # Process citations and OA status
source('scripts/attribute_gender_diagnostics.R') # Process citations and OA status

Unique studies: 3373

Unique Entries as studies and author combinations: 9066

Number of rows: 9066

JOURNAL n percentage
Journal of New Music Research 1496 16.5
Music Perception 1845 20.4
Music and Science 900 9.9
Musicae Scientiae 1524 16.8
Psychology of Music 3301 36.4
Total 9066 100.0

Prop. over .90 conf. = 0.892786234281932 /nProp. over .95 conf. = 0.866644606221046 /nProp. under .55 conf. = 0.00981689830134569 /nProp. under .55 conf. = 89 /n/n ***

Gender M Md
female 0.96 1
male 0.97 1

Gender M Md LCI UCI
female 19.81 9 18.73 20.88
male 22.24 10 21.24 23.24

A tibble: 1 × 10

estimate estimate1 estimate2 statistic p.value parameter conf.low conf.high 1 -2.43 19.8 22.2 -3.25 0.00114 8417. -3.90 -0.967 # ℹ 2 more variables: method , alternative # A tibble: 1 × 4 statistic p.value method alternative
1 9392423 0.0000616 Wilcoxon rank sum test with continuity correc… two.sided

Gender Distribution
est lwr.ci upr.ci
0.402 0.392 0.413
0.598 0.587 0.608
source('scripts/export_gender_data.R')

Summarise

source('scripts/summarise_gender.R') # different summaries
Gender n percentage
female 3647 40.2
male 5419 59.8
Total 9066 100.0

Number of coauthors:

median: 2 mean: 2.688 sd: 1.77 max: 34

Quantify

source('scripts/quantify_authorship.R') # use Odds
name Odds_ratio CI_low CI_high
Single 1.11 0.95 1.29
First 1.41 1.28 1.54
Coauthor 1.00 0.91 1.09
Last 0.73 0.67 0.81

[1] “5-year growth rate of female authorships:”

Type AAGR
First 12.15
Coauthor -10.81
Last -9.89
source('scripts/citations.R')           # Citations and gender
print(knitr::kable(citestats_all, digits = 2, caption = 'Citations across all authors'))
Citations across all authors
Gender Md M Q75 CI_lower CI_upper
female 9 19.81 22 9 10
male 10 22.24 27 9 10
print(knitr::kable(stats_all))
statistic p.value parameter method
16.05391 6.16e-05 1 Kruskal-Wallis rank sum test
source('scripts/open_access.R')         # OA and gender
print(knitr::kable(author_OA, digits = 2, caption = 'Open access across all authors'))
Open access across all authors
Odds_ratio CI CI_low CI_high Type
1.49 0.95 1.29 1.73 First
1.06 0.95 0.92 1.23 Co
0.86 0.95 0.72 1.02 Last

Geographical

source('scripts/country_table.R') # OK

source('scripts/visualise_gender.R') # OK

Top countries

Female author odds ratios across continents.
Continent N Odds_ratio CI_low CI_high
Europe 4985 0.82 0.75 0.89
Americas 2356 1.12 1.02 1.23
Asia 931 0.89 0.78 1.02
Oceania 742 1.66 1.43 1.93
Africa 52 0.91 0.52 1.59

Keywords and gender

source('scripts/keyword_analysis.R') 

Back to top