Analyse gender in music psychology from journal publication data
Authors
Tuomas Eerola
Anna Czepiel
Published
August 1, 2025
Gender analysis of the authors in music psychology journals since 2000. The journals included are Musicae Scientiae, Psychology of Music, Music Perception, Journal of New Music Research, and Music & Science and the data been obtained in June 2025 from Scopus.
Entries in the merged database: 3926 Entries in the author-expanded database: 9922 Entries in the author-expanded database after filtering editorials etc: 9662 Entries in the author-expanded database after filtering empty: 9651
source('scripts/attribute_country.R') # Add country affiliations
Entries in the author-expanded database after author affiliations: 9630
source('scripts/attribute_gender.R') # Adds gender attributions (precalculated with API)
Gender
n
percentage
ambiguous
32
0.4
female
3701
40.6
male
5365
58.8
unknown
27
0.3
Total
9125
100.1
Entries in the author-expanded database after filtering books/unattributed: 9066
source('scripts/name_gender_fixes.R') # Fixes the gender attribution of some names manually
Manual fixes
source('scripts/create_keys.R') # Add keys for authors and study+author
Single authors count: 778 Single + last authors count: 3373 Unique authors count: 5312 Unique countries count: 63
source('scripts/clean_citations_and_OA.R') # Process citations and OA statussource('scripts/attribute_gender_diagnostics.R') # Process citations and OA status
Unique studies: 3373
Unique Entries as studies and author combinations: 9066
Number of rows: 9066
JOURNAL
n
percentage
Journal of New Music Research
1496
16.5
Music Perception
1845
20.4
Music and Science
900
9.9
Musicae Scientiae
1524
16.8
Psychology of Music
3301
36.4
Total
9066
100.0
Confidence of gender attribution by the API:
Prop. over .90 conf. = 0.893
Prop. over .95 conf. = 0.867
Prop. under .55 conf. = 0.01
Prop. under .55 conf. = 0.01
API: Gender probability means/medians.
Gender
M
Md
female
0.96
1
male
0.97
1
Citations across gender.
Gender
M
Md
LCI
UCI
female
19.81
9
18.73
20.88
male
22.24
10
21.24
23.24
Citations (t-test)
estimate
estimate1
estimate2
statistic
p.value
parameter
conf.low
conf.high
method
alternative
-2.43184
19.80861
22.24045
-3.254233
0.0011415
8416.543
-3.896703
-0.9669776
Welch Two Sample t-test
two.sided
Citations (Wilcox-test)
statistic
p.value
method
alternative
9392423
6.16e-05
Wilcoxon rank sum test with continuity correction
two.sided
Gender Distribution
est
lwr.ci
upr.ci
0.402
0.392
0.413
0.598
0.587
0.608
source('scripts/export_gender_data.R')
2 Summarise
source('scripts/summarise_gender.R') # different summaries
Gender
n
percentage
female
3647
40.2
male
5419
59.8
Total
9066
100.0
Number of coauthors:
median: 2 mean: 2.688 sd: 1.77 max: 34
Warning: Removed 2 rows containing missing values or values outside the scale range
(`geom_bar()`).
3 Quantify authorship types, citations and open access
source('scripts/quantify_authorship.R') # use Odds
Female authorship odds ratios by authorship type.
name
Odds_ratio
CI_low
CI_high
Single
0.905
0.778
1.052
First
1.408
1.284
1.544
Coauthor
0.997
0.913
1.090
Last
0.733
0.667
0.806
5-year growth rate of female authorships
Type
AAGR
First
12.15
Coauthor
-10.81
Last
-9.89
source('scripts/citations.R') # Citations and genderprint(knitr::kable(citestats_all, digits =2, caption ='Citations across all authors'))
Citations across all authors
Gender
Md
M
Q75
CI_lower
CI_upper
female
9
19.81
22
9
10
male
10
22.24
27
9
10
print(knitr::kable(stats_all))
statistic
p.value
parameter
method
16.05391
6.16e-05
1
Kruskal-Wallis rank sum test
source('scripts/open_access.R') # OA and genderprint(knitr::kable(author_OA, digits =2, caption ='Open access across all authors'))